🚧 Adds train script
This commit is contained in:
parent
dfbd7498ed
commit
0df9c588a7
1
.gitignore
vendored
1
.gitignore
vendored
@ -11,3 +11,4 @@ __pycache__/
|
||||
|
||||
*.jasp
|
||||
*.txt
|
||||
*.pth
|
||||
|
147
train_nn.py
Normal file
147
train_nn.py
Normal file
@ -0,0 +1,147 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import random_split, DataLoader, TensorDataset
|
||||
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
||||
|
||||
|
||||
class NeuralNetwork(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.features = nn.Sequential(
|
||||
nn.Linear(8, 256),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p=0.2),
|
||||
|
||||
nn.Linear(256, 256),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p=0.2),
|
||||
|
||||
nn.Linear(256, 256),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p=0.2),
|
||||
|
||||
nn.Linear(256, 256),
|
||||
nn.ReLU(),
|
||||
nn.Dropout(p=0.2),
|
||||
|
||||
nn.Linear(256, 4),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.lstm = nn.LSTM(input_size=4, hidden_size=64, batch_first=True)
|
||||
self.output_layer = nn.Linear(64, 4)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = x.unsqueeze(1)
|
||||
lstm_out, _ = self.lstm(x)
|
||||
x = lstm_out.squeeze(1)
|
||||
return self.output_layer(x)
|
||||
|
||||
|
||||
data = np.load("clean.npy")
|
||||
data_x = np.append(data[:, 0:2], data[:, 6:12], axis=1) # grade, sex, ses, occupation, living, commute, sleep, absence
|
||||
data_y = data[:, 2:6] # gpa, math, slovak, english
|
||||
print(f"Loaded data of shape {data.shape}")
|
||||
print(f"\tx: {data_x.shape}")
|
||||
print(f"\ty: {data_y.shape}")
|
||||
print("")
|
||||
|
||||
train_size = int(len(data) * 0.8)
|
||||
test_size = len(data) - train_size
|
||||
torch.manual_seed(42)
|
||||
|
||||
batch_size = 32
|
||||
epochs = 100
|
||||
lr = 0.001
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
dataset = TensorDataset(torch.Tensor(data_x), torch.Tensor(data_y))
|
||||
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
|
||||
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
|
||||
|
||||
print(f"Initialized dataloaders")
|
||||
print(f"\ttrain: {len(train_dataloader)} batches ({len(train_dataset)} samples)")
|
||||
print(f"\ttest: {len(test_dataloader)} batches ({len(test_dataset)} samples)")
|
||||
print("")
|
||||
|
||||
model = NeuralNetwork()
|
||||
model.to(device)
|
||||
|
||||
print(f"Initialized model")
|
||||
print(model)
|
||||
print("")
|
||||
|
||||
loss_fn = nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
||||
|
||||
for epoch in range(epochs):
|
||||
print(f"Epoch {epoch + 1}/{epochs}...\r", end="")
|
||||
|
||||
model.train()
|
||||
train_loss = 0.0
|
||||
|
||||
for X, y in train_dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
optimizer.zero_grad()
|
||||
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
train_loss += loss.item() * X.size(0)
|
||||
|
||||
train_loss /= len(train_dataset)
|
||||
|
||||
model.eval()
|
||||
test_loss = 0.0
|
||||
|
||||
with torch.no_grad():
|
||||
for X, y in test_dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
test_loss = loss.item() * X.size(0)
|
||||
|
||||
test_loss /= len(test_dataset)
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{epochs}\n"
|
||||
f"Train loss: {train_loss:.4f}\n"
|
||||
f"Test loss: {test_loss:.4f}\n"
|
||||
)
|
||||
|
||||
torch.save(model.state_dict(), "model.pth")
|
||||
print("Model saved to model.pth")
|
||||
|
||||
model.eval()
|
||||
all_preds = []
|
||||
all_labels = []
|
||||
|
||||
with torch.no_grad():
|
||||
for X, y in test_dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X)
|
||||
all_preds.append(pred.argmax(dim=1).cpu().numpy())
|
||||
all_labels.append(y.argmax(dim=1).cpu().numpy())
|
||||
|
||||
all_preds = np.concatenate(all_preds)
|
||||
all_labels = np.concatenate(all_labels)
|
||||
|
||||
accuracy = accuracy_score(all_labels, all_preds)
|
||||
precision = precision_score(all_labels, all_preds, average='weighted', zero_division=0)
|
||||
recall = recall_score(all_labels, all_preds, average='weighted', zero_division=0)
|
||||
f1 = f1_score(all_labels, all_preds, average='weighted')
|
||||
|
||||
print("\nEvaluation Metrics:")
|
||||
print(f"Accuracy: {accuracy:.4f}")
|
||||
print(f"Precision: {precision:.4f}")
|
||||
print(f"Recall: {recall:.4f}")
|
||||
print(f"F1 Score: {f1:.4f}")
|
Loading…
x
Reference in New Issue
Block a user