Adds printing group differences

This commit is contained in:
Daniel Svitan 2024-12-27 11:48:39 +01:00
parent 6831e847ff
commit 3ad7babcdc
2 changed files with 79 additions and 21 deletions

View File

@ -1,7 +1,9 @@
from typing import List
import itertools
import argparse
import numpy as np
import pandas as pd
import scipy.stats as stats
import scikit_posthocs as sp
import matplotlib.pyplot as plt
@ -14,35 +16,83 @@ graph = args.graph
save = args.save
# source: mostly ChatGPT (ain't no way i'm writing this shit myself)
def analyze(name: str, data: List[np.ndarray]):
#print(f"Checking if normally distributed for {name}")
#for i in range(len(data)):
# _, normal_p = stats.shapiro(data[i])
# if normal_p > 0.05:
# print(f"\tGroup {i}: normally distributed")
# else:
# print(f"\tGroup {i}: NOT normally distributed")
filtered_data = []
group_names = []
all_values = []
for index, item in enumerate(data):
if len(item) > 5:
filtered_data.append(item)
numeric_data = [x for x in item if isinstance(x, (int, float))]
if len(numeric_data) > 5:
filtered_data.append(numeric_data)
group_names.append(chr(65 + index))
all_values.extend(numeric_data)
else:
print(f"Data group at index {index} removed due to insufficient size ({len(item)})")
print(f"Data group at index {index} removed due to insufficient size ({len(numeric_data)})")
if len(filtered_data) < 2:
print(f"Insufficient number of groups for Kruskal-Wallis test in {name}")
return None, None
# Kruskal-Wallis Test
F, p = stats.kruskal(*filtered_data)
print(f"F-stats for {name}: {F}")
print(f"p-value for {name}: {p}")
print(f"\nF-stats for {name}: {F:.8f}")
print(f"p-value for {name}: {p:.8f}")
if round(p, 4) > 0.05:
if p > 0.05:
print("statistically insignificant\n")
return F, p
print("statistically significant")
#tukey_results = stats.tukey_hsd(*filtered_data)
#print(tukey_results)
ps = sp.posthoc_dunn(filtered_data, val_col='Values', group_col='Group', p_adjust='bonferroni')
print(ps)
# Post-Hoc Dunn Test (Bonferroni-adjusted p-values)
all_ranks = stats.rankdata(all_values) # Rank all values together
group_ranks = [all_ranks[start:start + len(group)] for start, group in
zip(np.cumsum([0] + [len(g) for g in filtered_data[:-1]]), filtered_data)]
posthoc_results = sp.posthoc_dunn(filtered_data, p_adjust='bonferroni')
# we don't really need to print this, it's contained in the big ahh table
# print("\nPost-Hoc Dunn Test Results (Bonferroni-adjusted p-values):")
# print(posthoc_results)
results = []
total_sample_size = len(all_values)
for group1, group2 in itertools.combinations(group_names, 2):
idx1 = group_names.index(group1)
idx2 = group_names.index(group2)
mean_rank_1 = np.mean(group_ranks[idx1])
mean_rank_2 = np.mean(group_ranks[idx2])
rank_diff = mean_rank_1 - mean_rank_2
n1 = len(filtered_data[idx1])
n2 = len(filtered_data[idx2])
# Effect size (Rank-Biserial Correlation)
z_stat = rank_diff / np.sqrt((n1 + n2) * (n1 * n2) / total_sample_size)
effect_size = z_stat / np.sqrt(total_sample_size)
# Mean difference
mean_diff = np.mean(filtered_data[idx1]) - np.mean(filtered_data[idx2])
# Median difference
median_diff = np.median(filtered_data[idx1]) - np.median(filtered_data[idx2])
# Post-Hoc Dunn p-value
p_value = posthoc_results.loc[idx1 + 1, idx2 + 1]
results.append({
"Group 1": group1,
"Group 2": group2,
"Effect Size": f"{effect_size:.4f}",
"Mean Difference": f"{mean_diff:.4f}",
"Median Difference": f"{median_diff:.4f}",
"Post-Hoc p-value": f"{p_value:.4f}"
})
results_df = pd.DataFrame(results, dtype="object")
print("\nSummary Table of Effect Size, Mean, and Median Differences:")
print(results_df.to_markdown(index=False, tablefmt="github", disable_numparse=True))
print("")
return F, p
@ -63,7 +113,7 @@ def plot_violin(data, labels, Fs, ps, title):
index = j * 2 + k
step = 1 if index > 0 else 0.5
axs[j, k].violinplot(data[index], showmedians=True)
axs[j, k].violinplot(data[index], showmedians=True, showmeans=True)
axs[j, k].set_title(grade_names[index])
axs[j, k].set_xlabel(title, fontweight="bold")
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
@ -72,13 +122,18 @@ def plot_violin(data, labels, Fs, ps, title):
F = round(Fs[index], 2)
p = round(ps[index], 4)
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold")
medians = list([np.median(a) for a in data[index]])
means = list([a.mean() for a in data[index]])
for l in range(len(medians)):
median = round(medians[l], 2)
axs[j, k].text(l + 1.05, median + 0.05, f"{median}")
mean = round(means[l], 2)
# left - mean, right - median
axs[j, k].text(l + 1.13, median - 0.05, f"{median}")
axs[j, k].text(l + 0.77, mean - 0.05, f"{mean}")
fig.tight_layout()
if save != "":

View File

@ -25,6 +25,7 @@ nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
packaging==24.2
pandas==2.2.3
pandas-flavor==0.6.0
patsy==1.0.1
pillow==11.0.0
pyparsing==3.2.0
@ -38,7 +39,9 @@ setuptools==75.6.0
six==1.17.0
statsmodels==0.14.4
sympy==1.13.1
tabulate==0.9.0
threadpoolctl==3.5.0
torch==2.5.1
typing_extensions==4.12.2
tzdata==2024.2
xarray==2024.11.0