Adds graph for absence

This commit is contained in:
Daniel Svitan 2024-12-21 21:47:56 +01:00
parent 0fceaafba6
commit fcb57718f5
2 changed files with 65 additions and 8 deletions

View File

@ -52,10 +52,10 @@ def plot_violin(data, labels, Fs, ps, title):
F = round(Fs[index], 2)
p = round(ps[index], 4)
axs[j, k].text(0.01, 0.99, f"F-stat: {F}\np-val: {p}", ha="left", va="top", transform=axs[j, k].transAxes,
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
fontweight="bold")
means = list([a.mean() for a in data[j * 2 + k]])
means = list([a.mean() for a in data[index]])
for l in range(len(means)):
mean = round(means[l], 2)
axs[j, k].text(l + 1.05, mean + 0.05, f"{mean}")

View File

@ -1,5 +1,13 @@
import argparse
import numpy as np
from scipy.stats import kendalltau
import scipy.stats as stats
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph")
args = parser.parse_args()
graph = args.graph
dataset = np.load("clean.npy")
print(f"dataset shape: {dataset.shape}; analyzing column 11 (absence)")
@ -9,7 +17,7 @@ print("")
def analyze_absence(name: str, col: np.ndarray):
absence_col = dataset[:, 11]
tau, p = kendalltau(absence_col, col)
tau, p = stats.kendalltau(absence_col, col)
print(f"ken-tau for {name}: {tau}")
print(f"p-value for {name}: {p}")
@ -18,8 +26,57 @@ def analyze_absence(name: str, col: np.ndarray):
else:
print("statistically significant\n")
return (absence_col, col), tau, p
analyze_absence("gpa", dataset[:, 2])
analyze_absence("math", dataset[:, 3])
analyze_absence("slovak", dataset[:, 4])
analyze_absence("english", dataset[:, 5])
data_gpa, tau_gpa, p_gpa = analyze_absence("gpa", dataset[:, 2])
data_math, tau_math, p_math = analyze_absence("math", dataset[:, 3])
data_slovak, tau_slovak, p_slovak = analyze_absence("slovak", dataset[:, 4])
data_english, tau_english, p_english = analyze_absence("english", dataset[:, 5])
data = [data_gpa, data_math, data_slovak, data_english]
taus = [tau_gpa, tau_math, tau_slovak, tau_english]
ps = [p_gpa, p_math, p_slovak, p_english]
if not graph:
exit(0)
grade_names = ["Priemer", "Matematika", "Slovenčina", "Angličtina"]
grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"]
fig, axs = plt.subplots(2, 2)
fig.suptitle("Absencia")
fig.set_size_inches(12, 9)
for j in range(2):
for k in range(2):
index = j * 2 + k
step = 1 if index > 0 else 0.5
if index == 0:
axs[j, k].scatter(dataset[:, 11], dataset[:, 2])
axs[j, k].set_xlabel("Počet vymeškaných hodín")
axs[j, k].set_ylabel(grade_name_labels[index])
else:
current = list([data[index][0][data[index][1] == i + 1] for i in range(5)]) # i wanna kms
axs[j, k].violinplot(list(filter(lambda x: len(x), current)), showmeans=True)
axs[j, k].set_xticks(np.arange(1, 6, 1), labels=["1", "2", "3", "4", "5"])
axs[j, k].set_xlabel(grade_name_labels[index])
axs[j, k].set_ylabel("Počet vymeškaných hodín")
axs[j, k].set_title(grade_names[index])
tau = round(taus[index], 2)
p = round(ps[index], 4)
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
fontweight="bold")
if index:
by_grade = [data[index][0][data[index][1] == i + 1] for i in range(5)]
means = list([a.mean() for a in filter(lambda b: len(b), by_grade)])
for l in range(len(means)):
mean = round(means[l], 2)
axs[j, k].text(l + 1.02, mean + 5, f"{mean}")
fig.tight_layout()
fig.show()
plt.show()