import argparse import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph") parser.add_argument("-s", "--save", default="", help="Graph save location") args = parser.parse_args() graph = args.graph save = args.save colors = ["lightblue", "lightgreen", "lightcoral"] edge_colors = ["blue", "green", "red"] dataset = np.load("clean.npy") print(f"dataset shape: {dataset.shape}; analyzing column 11 (absence)") print("\tinteger value") print("") def analyze_absence(name: str, col: np.ndarray): absence_col = dataset[:, 11] tau, p = stats.kendalltau(absence_col, col) print(f"ken-tau for {name}: {tau}") print(f"p-value for {name}: {p}") if p > 0.05: print("statistically insignificant\n") else: print("statistically significant\n") return (absence_col, col), tau, p data_gpa, tau_gpa, p_gpa = analyze_absence("gpa", dataset[:, 2]) data_math, tau_math, p_math = analyze_absence("math", dataset[:, 3]) data_slovak, tau_slovak, p_slovak = analyze_absence("slovak", dataset[:, 4]) data_english, tau_english, p_english = analyze_absence("english", dataset[:, 5]) data = [data_gpa, data_math, data_slovak, data_english] taus = [tau_gpa, tau_math, tau_slovak, tau_english] ps = [p_gpa, p_math, p_slovak, p_english] if not graph: exit(0) grade_names = ["Priemer", "Matematika", "Slovenčina", "Angličtina"] grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"] fig, axs = plt.subplots(2, 2) fig.suptitle("Absencia", fontsize=18) fig.set_size_inches(12, 9) for j in range(2): for k in range(2): index = j * 2 + k step = 1 if index > 0 else 0.5 if not index: x = data[index][0] # absence y = data[index][1] # grade axs[j, k].scatter(x, y) axs[j, k].set_xlabel("Počet vymeškaných hodín", fontweight="bold", fontsize=14) axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold", fontsize=14) axs[j, k].set_yticks(np.arange(1, 6)) # trendline z = np.polyfit(x, y, 1) p = np.poly1d(z) axs[j, k].plot(x, p(x), color="gray") else: by_grade = list([data[index][0][data[index][1] == i + 1] for i in range(5)]) # data[index][0] - absences # data[index][1] - grades # data[index][0][specific grade] - absences for that specific grande # loop 1 through 5 plug in ^^ axs[j, k].set_xlabel(grade_name_labels[index], fontweight="bold", fontsize=14) axs[j, k].set_ylabel("Počet vymeškaných hodín", fontweight="bold", fontsize=14) axs[j, k].boxplot(by_grade, tick_labels=["1", "2", "3", "4", "5"]) axs[j, k].set_title(grade_names[index], fontsize=16) tau = taus[index] p = ps[index] axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.4f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes, fontweight="bold", fontsize=12) if p < 0.05: axs[j, k].set_facecolor("#ffff99") fig.tight_layout() if save != "": plt.savefig(save) else: plt.show()