from typing import List import argparse import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph") parser.add_argument("-s", "--save", default="", help="Graph save location") args = parser.parse_args() graph = args.graph save = args.save def analyze(name: str, data: List[np.ndarray]): #print(f"Checking if normally distributed for {name}") #for i in range(len(data)): # _, normal_p = stats.shapiro(data[i]) # if normal_p > 0.05: # print(f"\tGroup {i}: normally distributed") # else: # print(f"\tGroup {i}: NOT normally distributed") filtered_data = [] for index, item in enumerate(data): if len(item) > 5: filtered_data.append(item) else: print(f"Data group at index {index} removed due to insufficient size ({len(item)})") F, p = stats.kruskal(*filtered_data) print(f"F-stats for {name}: {F}") print(f"p-value for {name}: {p}") if round(p, 4) > 0.05: print("statistically insignificant\n") return F, p print("statistically significant") tukey_results = stats.tukey_hsd(*filtered_data) print(tukey_results) return F, p def plot_violin(data, labels, Fs, ps, title): if not graph: return grade_names = ["Priemer", "Matematika", "Slovenčina", "Angličtina"] grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"] fig, axs = plt.subplots(2, 2) fig.suptitle(title) fig.set_size_inches(12, 9) for j in range(2): for k in range(2): index = j * 2 + k step = 1 if index > 0 else 0.5 axs[j, k].violinplot(data[index], showmedians=True) axs[j, k].set_title(grade_names[index]) axs[j, k].set_xlabel(title, fontweight="bold") axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold") axs[j, k].set_xticks(np.arange(1, len(labels) + 1), labels=labels) axs[j, k].set_yticks(np.arange(1, 5.01, step)) F = round(Fs[index], 2) p = round(ps[index], 4) axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes, fontweight="bold") medians = list([np.median(a) for a in data[index]]) for l in range(len(medians)): median = round(medians[l], 2) axs[j, k].text(l + 1.05, median + 0.05, f"{median}") fig.tight_layout() fig.show() if save != "": plt.savefig(save) else: plt.show()