⚡ Changes posthoc to conover
This commit is contained in:
parent
dc2e417969
commit
6ddd476834
17
analyze.py
17
analyze.py
@ -52,10 +52,7 @@ def analyze(name: str, data: List[np.ndarray]):
|
||||
all_ranks = stats.rankdata(all_values) # Rank all values together
|
||||
group_ranks = [all_ranks[start:start + len(group)] for start, group in
|
||||
zip(np.cumsum([0] + [len(g) for g in filtered_data[:-1]]), filtered_data)]
|
||||
posthoc_results = sp.posthoc_dunn(filtered_data, p_adjust='bonferroni')
|
||||
# we don't really need to print this, it's contained in the big ahh table
|
||||
# print("\nPost-Hoc Dunn Test Results (Bonferroni-adjusted p-values):")
|
||||
# print(posthoc_results)
|
||||
posthoc_results = sp.posthoc_conover(filtered_data, p_adjust='bonferroni')
|
||||
|
||||
results = []
|
||||
total_sample_size = len(all_values)
|
||||
@ -120,6 +117,13 @@ def plot_violin(data, labels, Fs, ps, title):
|
||||
axs[j, k].set_title(grade_names[index])
|
||||
axs[j, k].set_xlabel(title, fontweight="bold")
|
||||
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
|
||||
|
||||
# q1-q3 lines
|
||||
for vec in data[index]:
|
||||
inds = np.arange(1, len(data[index]) + 1)
|
||||
quartile1, median, quartile3 = np.percentile(vec, [25, 50, 75])
|
||||
axs[j, k].vlines(inds, quartile1, quartile3, color="gray", linewidths=3)
|
||||
|
||||
axs[j, k].set_xticks(np.arange(1, len(labels) + 1), labels=labels)
|
||||
axs[j, k].set_yticks(np.arange(1, 5.01, step))
|
||||
|
||||
@ -135,7 +139,10 @@ def plot_violin(data, labels, Fs, ps, title):
|
||||
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top",
|
||||
transform=axs[j, k].transAxes,
|
||||
fontweight="bold")
|
||||
axs[j, k].text(0.99, 0.99, f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)", ha="right", va="top",
|
||||
axs[j, k].text(0.99, 0.99,
|
||||
f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)\nSivá - medzi kvartilom 1 a 3",
|
||||
ha="right",
|
||||
va="top",
|
||||
transform=axs[j, k].transAxes)
|
||||
|
||||
medians = list([np.median(a) for a in data[index]])
|
||||
|
Loading…
x
Reference in New Issue
Block a user