🔨 Changes anova to kruskal

This commit is contained in:
Daniel Svitan 2024-12-23 16:20:49 +01:00
parent 4ed3cae526
commit 6fea60408f

View File

@ -7,21 +7,38 @@ import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph")
parser.add_argument("-s", "--save", default="", help="Graph save location")
args = parser.parse_args()
graph = args.graph
save = args.save
def analyze(name: str, data: List[np.ndarray]):
F, p = stats.f_oneway(*data)
#print(f"Checking if normally distributed for {name}")
#for i in range(len(data)):
# _, normal_p = stats.shapiro(data[i])
# if normal_p > 0.05:
# print(f"\tGroup {i}: normally distributed")
# else:
# print(f"\tGroup {i}: NOT normally distributed")
filtered_data = []
for index, item in enumerate(data):
if len(item) > 5:
filtered_data.append(item)
else:
print(f"Data group at index {index} removed due to insufficient size ({len(item)})")
F, p = stats.kruskal(*filtered_data)
print(f"F-stats for {name}: {F}")
print(f"p-value for {name}: {p}")
if p > 0.05:
if round(p, 4) > 0.05:
print("statistically insignificant\n")
return F, p
print("statistically significant")
tukey_results = stats.tukey_hsd(*data)
tukey_results = stats.tukey_hsd(*filtered_data)
print(tukey_results)
return F, p
@ -43,7 +60,7 @@ def plot_violin(data, labels, Fs, ps, title):
index = j * 2 + k
step = 1 if index > 0 else 0.5
axs[j, k].violinplot(data[index], showmeans=True)
axs[j, k].violinplot(data[index], showmedians=True)
axs[j, k].set_title(grade_names[index])
axs[j, k].set_xlabel(title, fontweight="bold")
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
@ -55,11 +72,14 @@ def plot_violin(data, labels, Fs, ps, title):
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
fontweight="bold")
means = list([a.mean() for a in data[index]])
for l in range(len(means)):
mean = round(means[l], 2)
axs[j, k].text(l + 1.05, mean + 0.05, f"{mean}")
medians = list([np.median(a) for a in data[index]])
for l in range(len(medians)):
median = round(medians[l], 2)
axs[j, k].text(l + 1.05, median + 0.05, f"{median}")
fig.tight_layout()
fig.show()
plt.show()
if save != "":
plt.savefig(save)
else:
plt.show()