soc-2024/analyze.py
2025-03-23 19:44:11 +01:00

168 lines
6.2 KiB
Python

from typing import List
import itertools
import argparse
import numpy as np
import pandas as pd
import scipy.stats as stats
import scikit_posthocs as sp
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph")
parser.add_argument("-s", "--save", default="", help="Graph save location")
args = parser.parse_args()
graph = args.graph
save = args.save
colors = ["lightblue", "lightgreen", "lightcoral"]
edge_colors = ["blue", "green", "red"]
# source: mostly ChatGPT (ain't no way i'm writing this shit myself)
def analyze(name: str, data: List[np.ndarray]):
filtered_data = []
group_names = []
all_values = []
for index, item in enumerate(data):
numeric_data = [x for x in item if isinstance(x, (int, float))]
if len(numeric_data) > 5:
filtered_data.append(numeric_data)
group_names.append(chr(65 + index))
all_values.extend(numeric_data)
else:
print(f"Data group at index {index} removed due to insufficient size ({len(numeric_data)})")
if len(filtered_data) < 2:
print(f"Insufficient number of groups for Kruskal-Wallis test in {name}")
return None, None
# Kruskal-Wallis Test
F, p = stats.kruskal(*filtered_data)
print(f"\nF-stats for {name}: {F:.8f}")
print(f"p-value for {name}: {p:.8f}")
if p > 0.05:
print("statistically insignificant\n")
return F, p
print("statistically significant")
# Post-Hoc Dunn Test (Bonferroni-adjusted p-values)
all_ranks = stats.rankdata(all_values) # Rank all values together
group_ranks = [all_ranks[start:start + len(group)] for start, group in
zip(np.cumsum([0] + [len(g) for g in filtered_data[:-1]]), filtered_data)]
posthoc_results = sp.posthoc_conover(filtered_data, p_adjust='bonferroni')
results = []
total_sample_size = len(all_values)
for group1, group2 in itertools.combinations(group_names, 2):
idx1 = group_names.index(group1)
idx2 = group_names.index(group2)
mean_rank_1 = np.mean(group_ranks[idx1])
mean_rank_2 = np.mean(group_ranks[idx2])
rank_diff = mean_rank_1 - mean_rank_2
n1 = len(filtered_data[idx1])
n2 = len(filtered_data[idx2])
# Effect size (Rank-Biserial Correlation)
z_stat = rank_diff / np.sqrt((n1 + n2) * (n1 * n2) / total_sample_size)
effect_size = z_stat / np.sqrt(total_sample_size)
# Mean difference
mean_diff = np.mean(filtered_data[idx1]) - np.mean(filtered_data[idx2])
# Median difference
median_diff = np.median(filtered_data[idx1]) - np.median(filtered_data[idx2])
# Post-Hoc Dunn p-value
p_value = posthoc_results.loc[idx1 + 1, idx2 + 1]
results.append({
"Skupina 1": group1,
"Skupina 2": group2,
"Veľkosť účinku": f"{effect_size:.4f}",
"Rozdiel priemerov": f"{mean_diff:.4f}",
"Rozdiel mediánov": f"{median_diff:.4f}",
"Post-Hoc p-hodnota": f"{p_value:.4f}"
})
results_df = pd.DataFrame(results, dtype="object")
print("\nSummary Table of Effect Size, Mean, and Median Differences:")
print(results_df.to_markdown(index=False, tablefmt="github", disable_numparse=True))
print("")
return F, p
def plot_violin(data, labels, Fs, ps, title):
if not graph:
return
grade_names = ["Priemer", "Matematika", "Slovenčina", "Angličtina"]
grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"]
fig, axs = plt.subplots(2, 2)
fig.suptitle(title, fontsize=18)
fig.set_size_inches(12, 9)
for j in range(2):
for k in range(2):
index = j * 2 + k
step = 1 if index > 0 else 0.5
parts = axs[j, k].violinplot(data[index], showmedians=True, showmeans=True)
axs[j, k].set_title(grade_names[index], fontsize=16)
axs[j, k].set_xlabel(title, fontweight="bold", fontsize=14)
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold", fontsize=14)
# q1-q3 lines
for ind, vec in enumerate(data[index]):
quartile1, median, quartile3 = np.percentile(vec, [25, 50, 75])
if quartile1 == quartile3:
if quartile1 >= 0.1:
quartile1 -= 0.1
if quartile3 <= max(vec) - 0.1:
quartile3 += 0.1
axs[j, k].vlines(ind + 1, quartile1, quartile3, color="gray", linewidths=3)
axs[j, k].set_xticks(np.arange(1, len(labels) + 1), labels=labels)
axs[j, k].set_yticks(np.arange(1, 5.01, step))
parts["cmeans"].set_color("red")
parts["cmedians"].set_color("green")
for i, part in enumerate(parts["bodies"]):
part.set_facecolor(colors[i % len(colors)])
part.set_edgecolor(edge_colors[i % len(edge_colors)])
F = Fs[index]
p = ps[index]
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.4f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold",
fontsize=12)
axs[j, k].text(0.99, 0.99,
f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)\nSivá - medzi kvartilom 1 a 3",
ha="right",
va="top",
transform=axs[j, k].transAxes,
fontsize=12)
medians = list([np.median(a) for a in data[index]])
means = list([a.mean() for a in data[index]])
for l in range(len(data[index])):
median = medians[l]
mean = means[l]
# left - mean, right - median
axs[j, k].text(l + 1.13, median - 0.05, f"{median:.2f}", color="green", fontsize=12, fontweight="bold")
axs[j, k].text(l + 0.87 - len(labels) * 0.065, mean - 0.05, f"{mean:.2f}", color="red", fontsize=12, fontweight="bold")
fig.tight_layout()
if save != "":
plt.savefig(save)
else:
plt.show()