💄 Increases font size

This commit is contained in:
Daniel Svitan 2025-03-23 19:44:11 +01:00
parent 77379dcb1b
commit b6b0a88eba
4 changed files with 37 additions and 70 deletions

View File

@ -105,7 +105,7 @@ def plot_violin(data, labels, Fs, ps, title):
grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"]
fig, axs = plt.subplots(2, 2)
fig.suptitle(title)
fig.suptitle(title, fontsize=18)
fig.set_size_inches(12, 9)
for j in range(2):
@ -114,9 +114,9 @@ def plot_violin(data, labels, Fs, ps, title):
step = 1 if index > 0 else 0.5
parts = axs[j, k].violinplot(data[index], showmedians=True, showmeans=True)
axs[j, k].set_title(grade_names[index])
axs[j, k].set_xlabel(title, fontweight="bold")
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
axs[j, k].set_title(grade_names[index], fontsize=16)
axs[j, k].set_xlabel(title, fontweight="bold", fontsize=14)
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold", fontsize=14)
# q1-q3 lines
for ind, vec in enumerate(data[index]):
@ -142,12 +142,14 @@ def plot_violin(data, labels, Fs, ps, title):
p = ps[index]
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.4f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold")
fontweight="bold",
fontsize=12)
axs[j, k].text(0.99, 0.99,
f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)\nSivá - medzi kvartilom 1 a 3",
ha="right",
va="top",
transform=axs[j, k].transAxes)
transform=axs[j, k].transAxes,
fontsize=12)
medians = list([np.median(a) for a in data[index]])
means = list([a.mean() for a in data[index]])
@ -155,8 +157,8 @@ def plot_violin(data, labels, Fs, ps, title):
median = medians[l]
mean = means[l]
# left - mean, right - median
axs[j, k].text(l + 1.13, median - 0.05, f"{median:.2f}", color="green")
axs[j, k].text(l + 0.90 - len(labels) * 0.065, mean - 0.05, f"{mean:.2f}", color="red")
axs[j, k].text(l + 1.13, median - 0.05, f"{median:.2f}", color="green", fontsize=12, fontweight="bold")
axs[j, k].text(l + 0.87 - len(labels) * 0.065, mean - 0.05, f"{mean:.2f}", color="red", fontsize=12, fontweight="bold")
fig.tight_layout()
if save != "":

View File

@ -49,7 +49,7 @@ grade_names = ["Priemer", "Matematika", "Slovenčina", "Angličtina"]
grade_name_labels = ["Priemer známok", "Známka z matematiky", "Známka zo slovenčiny", "Známka z angličtiny"]
fig, axs = plt.subplots(2, 2)
fig.suptitle("Absencia")
fig.suptitle("Absencia", fontsize=18)
fig.set_size_inches(12, 9)
for j in range(2):
@ -61,8 +61,8 @@ for j in range(2):
x = data[index][0] # absence
y = data[index][1] # grade
axs[j, k].scatter(x, y)
axs[j, k].set_xlabel("Počet vymeškaných hodín")
axs[j, k].set_ylabel(grade_name_labels[index])
axs[j, k].set_xlabel("Počet vymeškaných hodín", fontweight="bold", fontsize=14)
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold", fontsize=14)
axs[j, k].set_yticks(np.arange(1, 6))
# trendline
@ -76,15 +76,18 @@ for j in range(2):
# data[index][1] - grades
# data[index][0][specific grade] - absences for that specific grande
# loop 1 through 5 plug in ^^
axs[j, k].set_xlabel(grade_name_labels[index], fontweight="bold", fontsize=14)
axs[j, k].set_ylabel("Počet vymeškaných hodín", fontweight="bold", fontsize=14)
axs[j, k].boxplot(by_grade, tick_labels=["1", "2", "3", "4", "5"])
axs[j, k].set_title(grade_names[index])
axs[j, k].set_title(grade_names[index], fontsize=16)
tau = taus[index]
p = ps[index]
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.4f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold")
fontweight="bold",
fontsize=12)
fig.tight_layout()
if save != "":

View File

@ -34,9 +34,9 @@ def plot_pie(data, labels, title, explode=None):
else:
i += 1
plt.figure(figsize=(8, 6))
plt.pie(np.array(data), labels=labels, autopct=lambda pct: percent(pct / 100), explode=explode)
plt.title(title)
plt.figure(figsize=(12, 9))
plt.pie(np.array(data), labels=labels, autopct=lambda pct: percent(pct / 100), explode=explode, textprops={"fontsize": 16})
plt.title(title, fontsize=20)
plt.tight_layout()
if save:
@ -51,11 +51,11 @@ def plot_hist(data, title, xlabel, ylabel):
if not graph:
return
plt.figure(figsize=(8, 6))
plt.figure(figsize=(12, 9))
plt.hist(data, 25, edgecolor="black")
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.title(title, fontsize=20)
plt.xlabel(xlabel, fontsize=16)
plt.ylabel(ylabel, fontsize=16)
plt.tight_layout()
if save:
@ -103,7 +103,7 @@ print("--- GPA ---")
print("n/a")
print("")
plot_hist(dataset[:, 2], "Distribúcia piemernu známok", "Piemerná známka", "Počet študentov/tiek")
plot_hist(dataset[:, 2], "Distribúcia piemernu známok", "Piemerná známka", "Počet študent*iek")
math = dataset[:, 3]
math_dist = [
@ -212,7 +212,7 @@ print(f"other : {percent(living_dist[4])}")
print("")
plot_pie(living_dist,
["S rodinou", "S rodinným príslušníkom/ou", "Sám/a alebo so spolubývajúcim/ou", "Intrák", "Iné"],
["S rodinou", "S rodinnou príslušní*čkou", "Sám*a alebo so spolubývajúc*ou", "Intrák", "Iné"],
"Distribúcia životných situácií")
commute = dataset[:, 9]
@ -253,4 +253,4 @@ print("--- ABSENCE ---")
print("n/a")
print("")
plot_hist(dataset[:, 11], "Distribúcia absencií", "Počet neprítomných hodín", "Počet študentov/tiek")
plot_hist(dataset[:, 11], "Distribúcia absencií", "Počet neprítomných hodín", "Počet študent*iek")

View File

@ -1,47 +1,9 @@
contourpy==1.3.1
cycler==0.12.1
filelock==3.16.1
fonttools==4.55.3
fsspec==2024.12.0
Jinja2==3.1.5
joblib==1.4.2
kiwisolver==1.4.7
MarkupSafe==3.0.2
matplotlib==3.10.0
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.1
nvidia-cublas-cu12==12.4.5.8
nvidia-cuda-cupti-cu12==12.4.127
nvidia-cuda-nvrtc-cu12==12.4.127
nvidia-cuda-runtime-cu12==12.4.127
nvidia-cudnn-cu12==9.1.0.70
nvidia-cufft-cu12==11.2.1.3
nvidia-curand-cu12==10.3.5.147
nvidia-cusolver-cu12==11.6.1.9
nvidia-cusparse-cu12==12.3.1.170
nvidia-nccl-cu12==2.21.5
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
packaging==24.2
pandas==2.2.3
pandas-flavor==0.6.0
patsy==1.0.1
pillow==11.0.0
pyparsing==3.2.0
python-dateutil==2.9.0.post0
pytz==2024.2
scikit-learn==1.6.0
scikit-posthocs==0.11.2
scipy==1.14.1
seaborn==0.13.2
setuptools==75.6.0
six==1.17.0
statsmodels==0.14.4
sympy==1.13.1
tabulate==0.9.0
threadpoolctl==3.5.0
torch==2.5.1
typing_extensions==4.12.2
tzdata==2024.2
xarray==2024.11.0
numpy
matplotlib
PyQt6
pandas
scipy
scikit_posthocs
tabulate
torch
scikit-learn