🧪 Adds goodness of fit test
This commit is contained in:
parent
bd60a9aa3f
commit
c3651fb62e
57
analysis.py
57
analysis.py
@ -36,6 +36,9 @@ categories = [
|
||||
]
|
||||
categories_c = 17 # how many categories
|
||||
|
||||
# from how many years do we have data
|
||||
years = 9
|
||||
|
||||
|
||||
def map_counties(arr: List[str]) -> List[int]:
|
||||
ret = []
|
||||
@ -57,7 +60,6 @@ with open("dataset.txt") as stream:
|
||||
|
||||
raw_data.append([year, category, *map_counties(wins_raw)])
|
||||
|
||||
|
||||
# 0 - year
|
||||
# 1 - abteilung (category) idx (starts at 1)
|
||||
# 2-7 - first to last place county idxs
|
||||
@ -69,28 +71,53 @@ data_original = np.array(raw_data)
|
||||
# ZA | 9 | 8 | ...
|
||||
# KE | 4 | 6 | ...
|
||||
# as a row-first 2d numpy array (first dimension will represent counties, second counts of placements)
|
||||
data = np.zeros((counties_c, 5)) # 5 because top five
|
||||
# data = np.zeros((counties_c, 5)) # 5 because top five
|
||||
# for sample in data_original:
|
||||
# results = sample[2:7]
|
||||
# for placement_idx, county_idx in enumerate(results):
|
||||
# data[county_idx, placement_idx] += 1
|
||||
|
||||
# data is table where rows represent placement and columns county index
|
||||
# 1st | 5 | 1 | 2 | ...
|
||||
# 2nd | 3 | 0 | 7 | ...
|
||||
# 3rd ...
|
||||
# data = np.zeros((5, years * categories_c)) # same as (5, len(data_original))
|
||||
# for i, sample in enumerate(data_original):
|
||||
# results = sample[2:7]
|
||||
# for j in range(5):
|
||||
# data[j][i] = results[j]
|
||||
|
||||
# wins per county
|
||||
# goodness-of-fit problem using Chi Square
|
||||
# based on observed vs expected frequency
|
||||
observed = np.zeros(counties_c)
|
||||
for sample in data_original:
|
||||
results = sample[2:7]
|
||||
for placement_idx, county_idx in enumerate(results):
|
||||
data[county_idx, placement_idx] += 1
|
||||
for i in results:
|
||||
observed[i] += 1
|
||||
|
||||
expected = np.ones_like(observed) * (sum(observed) / len(observed))
|
||||
|
||||
print("Data:")
|
||||
print(data)
|
||||
print(observed)
|
||||
print(expected)
|
||||
|
||||
chi2, p = stats.chisquare(f_obs=observed, f_exp=expected)
|
||||
print(f"Chi-square = {chi2:.2f}, p-value = {p:.4f}")
|
||||
|
||||
# H0: county and placement are independent
|
||||
# H1: county and placement are not independent
|
||||
print("\nAttempting Chi-Square test")
|
||||
chi2, p, dof, expected = stats.chi2_contingency(data)
|
||||
|
||||
print(f"Chi-Square Statistic: {chi2}")
|
||||
print(f"p-value: {p}")
|
||||
print(f"Degrees of Freedom: {dof}")
|
||||
#print("Expected Frequencies:\n", expected)
|
||||
# print("\nAttempting Chi-Square test")
|
||||
# chi2, p, dof, expected = stats.chi2_contingency(data)
|
||||
|
||||
print("\nAttempting Fisher's Exact test")
|
||||
oddsratio, p_value = stats.fisher_exact(data)
|
||||
# print(f"Chi-Square Statistic: {chi2}")
|
||||
# print(f"p-value: {p}")
|
||||
# print(f"Degrees of Freedom: {dof}")
|
||||
# print("Expected Frequencies:\n", expected)
|
||||
|
||||
print(f"Odds Ratio: {oddsratio}")
|
||||
print(f"p-value: {p_value}")
|
||||
# print("\nAttempting Fisher's Exact test")
|
||||
# oddsratio, p_value = stats.fisher_exact(data)
|
||||
|
||||
# print(f"Odds Ratio: {oddsratio}")
|
||||
# print(f"p-value: {p_value}")
|
||||
|
Loading…
x
Reference in New Issue
Block a user