Compare commits
10 Commits
6fea60408f
...
2f3c547b55
Author | SHA1 | Date | |
---|---|---|---|
![]() |
2f3c547b55 | ||
![]() |
f6eafc28ec | ||
![]() |
96a6599cf9 | ||
![]() |
6ddd476834 | ||
![]() |
dc2e417969 | ||
![]() |
ab0d117c70 | ||
![]() |
f5fb3f647a | ||
![]() |
3ad7babcdc | ||
![]() |
6831e847ff | ||
![]() |
29ab473c3c |
3
.gitignore
vendored
3
.gitignore
vendored
@ -6,6 +6,7 @@ venv/
|
||||
__pycache__/
|
||||
|
||||
results/
|
||||
paper/
|
||||
|
||||
*.zip
|
||||
*.csv
|
||||
@ -13,6 +14,8 @@ results/
|
||||
|
||||
*.jasp
|
||||
*.pth
|
||||
*.png
|
||||
*.drawio
|
||||
|
||||
*.tar.gz
|
||||
*.zip
|
||||
|
128
analyze.py
128
analyze.py
@ -1,8 +1,11 @@
|
||||
from typing import List
|
||||
import itertools
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import scipy.stats as stats
|
||||
import scikit_posthocs as sp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
@ -12,34 +15,84 @@ args = parser.parse_args()
|
||||
graph = args.graph
|
||||
save = args.save
|
||||
|
||||
colors = ["lightblue", "lightgreen", "lightcoral"]
|
||||
edge_colors = ["blue", "green", "red"]
|
||||
|
||||
|
||||
# source: mostly ChatGPT (ain't no way i'm writing this shit myself)
|
||||
def analyze(name: str, data: List[np.ndarray]):
|
||||
#print(f"Checking if normally distributed for {name}")
|
||||
#for i in range(len(data)):
|
||||
# _, normal_p = stats.shapiro(data[i])
|
||||
# if normal_p > 0.05:
|
||||
# print(f"\tGroup {i}: normally distributed")
|
||||
# else:
|
||||
# print(f"\tGroup {i}: NOT normally distributed")
|
||||
|
||||
filtered_data = []
|
||||
group_names = []
|
||||
all_values = []
|
||||
for index, item in enumerate(data):
|
||||
if len(item) > 5:
|
||||
filtered_data.append(item)
|
||||
numeric_data = [x for x in item if isinstance(x, (int, float))]
|
||||
if len(numeric_data) > 5:
|
||||
filtered_data.append(numeric_data)
|
||||
group_names.append(chr(65 + index))
|
||||
all_values.extend(numeric_data)
|
||||
else:
|
||||
print(f"Data group at index {index} removed due to insufficient size ({len(item)})")
|
||||
print(f"Data group at index {index} removed due to insufficient size ({len(numeric_data)})")
|
||||
|
||||
if len(filtered_data) < 2:
|
||||
print(f"Insufficient number of groups for Kruskal-Wallis test in {name}")
|
||||
return None, None
|
||||
|
||||
# Kruskal-Wallis Test
|
||||
F, p = stats.kruskal(*filtered_data)
|
||||
print(f"F-stats for {name}: {F}")
|
||||
print(f"p-value for {name}: {p}")
|
||||
print(f"\nF-stats for {name}: {F:.8f}")
|
||||
print(f"p-value for {name}: {p:.8f}")
|
||||
|
||||
if round(p, 4) > 0.05:
|
||||
if p > 0.05:
|
||||
print("statistically insignificant\n")
|
||||
return F, p
|
||||
|
||||
print("statistically significant")
|
||||
tukey_results = stats.tukey_hsd(*filtered_data)
|
||||
print(tukey_results)
|
||||
|
||||
# Post-Hoc Dunn Test (Bonferroni-adjusted p-values)
|
||||
all_ranks = stats.rankdata(all_values) # Rank all values together
|
||||
group_ranks = [all_ranks[start:start + len(group)] for start, group in
|
||||
zip(np.cumsum([0] + [len(g) for g in filtered_data[:-1]]), filtered_data)]
|
||||
posthoc_results = sp.posthoc_conover(filtered_data, p_adjust='bonferroni')
|
||||
|
||||
results = []
|
||||
total_sample_size = len(all_values)
|
||||
for group1, group2 in itertools.combinations(group_names, 2):
|
||||
idx1 = group_names.index(group1)
|
||||
idx2 = group_names.index(group2)
|
||||
|
||||
mean_rank_1 = np.mean(group_ranks[idx1])
|
||||
mean_rank_2 = np.mean(group_ranks[idx2])
|
||||
rank_diff = mean_rank_1 - mean_rank_2
|
||||
|
||||
n1 = len(filtered_data[idx1])
|
||||
n2 = len(filtered_data[idx2])
|
||||
|
||||
# Effect size (Rank-Biserial Correlation)
|
||||
z_stat = rank_diff / np.sqrt((n1 + n2) * (n1 * n2) / total_sample_size)
|
||||
effect_size = z_stat / np.sqrt(total_sample_size)
|
||||
|
||||
# Mean difference
|
||||
mean_diff = np.mean(filtered_data[idx1]) - np.mean(filtered_data[idx2])
|
||||
|
||||
# Median difference
|
||||
median_diff = np.median(filtered_data[idx1]) - np.median(filtered_data[idx2])
|
||||
|
||||
# Post-Hoc Dunn p-value
|
||||
p_value = posthoc_results.loc[idx1 + 1, idx2 + 1]
|
||||
|
||||
results.append({
|
||||
"Skupina 1": group1,
|
||||
"Skupina 2": group2,
|
||||
"Veľkosť účinku": f"{effect_size:.4f}",
|
||||
"Rozdiel priemerov": f"{mean_diff:.4f}",
|
||||
"Rozdiel mediánov": f"{median_diff:.4f}",
|
||||
"Post-Hoc p-hodnota": f"{p_value:.4f}"
|
||||
})
|
||||
|
||||
results_df = pd.DataFrame(results, dtype="object")
|
||||
print("\nSummary Table of Effect Size, Mean, and Median Differences:")
|
||||
print(results_df.to_markdown(index=False, tablefmt="github", disable_numparse=True))
|
||||
print("")
|
||||
|
||||
return F, p
|
||||
|
||||
@ -60,25 +113,52 @@ def plot_violin(data, labels, Fs, ps, title):
|
||||
index = j * 2 + k
|
||||
step = 1 if index > 0 else 0.5
|
||||
|
||||
axs[j, k].violinplot(data[index], showmedians=True)
|
||||
parts = axs[j, k].violinplot(data[index], showmedians=True, showmeans=True)
|
||||
axs[j, k].set_title(grade_names[index])
|
||||
axs[j, k].set_xlabel(title, fontweight="bold")
|
||||
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
|
||||
|
||||
# q1-q3 lines
|
||||
for ind, vec in enumerate(data[index]):
|
||||
quartile1, median, quartile3 = np.percentile(vec, [25, 50, 75])
|
||||
if quartile1 == quartile3:
|
||||
if quartile1 >= 0.1:
|
||||
quartile1 -= 0.1
|
||||
if quartile3 <= max(vec) - 0.1:
|
||||
quartile3 += 0.1
|
||||
axs[j, k].vlines(ind + 1, quartile1, quartile3, color="gray", linewidths=3)
|
||||
|
||||
axs[j, k].set_xticks(np.arange(1, len(labels) + 1), labels=labels)
|
||||
axs[j, k].set_yticks(np.arange(1, 5.01, step))
|
||||
|
||||
F = round(Fs[index], 2)
|
||||
p = round(ps[index], 4)
|
||||
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
|
||||
parts["cmeans"].set_color("red")
|
||||
parts["cmedians"].set_color("green")
|
||||
|
||||
for i, part in enumerate(parts["bodies"]):
|
||||
part.set_facecolor(colors[i % len(colors)])
|
||||
part.set_edgecolor(edge_colors[i % len(edge_colors)])
|
||||
|
||||
F = Fs[index]
|
||||
p = ps[index]
|
||||
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.4f}\np-val: {p:.4f}", ha="left", va="top",
|
||||
transform=axs[j, k].transAxes,
|
||||
fontweight="bold")
|
||||
axs[j, k].text(0.99, 0.99,
|
||||
f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)\nSivá - medzi kvartilom 1 a 3",
|
||||
ha="right",
|
||||
va="top",
|
||||
transform=axs[j, k].transAxes)
|
||||
|
||||
medians = list([np.median(a) for a in data[index]])
|
||||
for l in range(len(medians)):
|
||||
median = round(medians[l], 2)
|
||||
axs[j, k].text(l + 1.05, median + 0.05, f"{median}")
|
||||
means = list([a.mean() for a in data[index]])
|
||||
for l in range(len(data[index])):
|
||||
median = medians[l]
|
||||
mean = means[l]
|
||||
# left - mean, right - median
|
||||
axs[j, k].text(l + 1.13, median - 0.05, f"{median:.2f}", color="green")
|
||||
axs[j, k].text(l + 0.90 - len(labels) * 0.065, mean - 0.05, f"{mean:.2f}", color="red")
|
||||
|
||||
fig.tight_layout()
|
||||
fig.show()
|
||||
if save != "":
|
||||
plt.savefig(save)
|
||||
else:
|
||||
|
19
analyze.sh
Executable file
19
analyze.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/usr/bin/bash
|
||||
|
||||
find results ! -name 'train.txt' -type f -exec rm -f {} +
|
||||
|
||||
./venv/bin/python3 distribution.py --graph --save | tee results/distribution.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_sex.py --graph --save "results/Figure_13.png" | tee results/sex.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_ses.py --graph --save "results/Figure_14.png" | tee results/ses.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_occupation.py --graph --save "results/Figure_15.png" | tee results/occupation.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_living.py --graph --save "results/Figure_16.png" | tee results/living.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_commute.py --graph --save "results/Figure_17.png" | tee results/commute.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_sleep.py --graph --save "results/Figure_18.png" | tee results/sleep.txt
|
||||
echo -e "\n\n\n\n"
|
||||
./venv/bin/python3 analyze_absence.py --graph --save "results/Figure_19.png" | tee results/absence.txt
|
@ -6,8 +6,13 @@ import matplotlib.pyplot as plt
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph")
|
||||
parser.add_argument("-s", "--save", default="", help="Graph save location")
|
||||
args = parser.parse_args()
|
||||
graph = args.graph
|
||||
save = args.save
|
||||
|
||||
colors = ["lightblue", "lightgreen", "lightcoral"]
|
||||
edge_colors = ["blue", "green", "red"]
|
||||
|
||||
dataset = np.load("clean.npy")
|
||||
print(f"dataset shape: {dataset.shape}; analyzing column 11 (absence)")
|
||||
@ -52,31 +57,37 @@ for j in range(2):
|
||||
index = j * 2 + k
|
||||
step = 1 if index > 0 else 0.5
|
||||
|
||||
if index == 0:
|
||||
axs[j, k].scatter(dataset[:, 11], dataset[:, 2])
|
||||
if not index:
|
||||
x = data[index][0] # absence
|
||||
y = data[index][1] # grade
|
||||
axs[j, k].scatter(x, y)
|
||||
axs[j, k].set_xlabel("Počet vymeškaných hodín")
|
||||
axs[j, k].set_ylabel(grade_name_labels[index])
|
||||
axs[j, k].set_yticks(np.arange(1, 6))
|
||||
|
||||
# trendline
|
||||
z = np.polyfit(x, y, 1)
|
||||
p = np.poly1d(z)
|
||||
|
||||
axs[j, k].plot(x, p(x), color="gray")
|
||||
else:
|
||||
current = list([data[index][0][data[index][1] == i + 1] for i in range(5)]) # i wanna kms
|
||||
axs[j, k].violinplot(list(filter(lambda x: len(x), current)), showmeans=True)
|
||||
axs[j, k].set_xticks(np.arange(1, 6, 1), labels=["1", "2", "3", "4", "5"])
|
||||
axs[j, k].set_xlabel(grade_name_labels[index])
|
||||
axs[j, k].set_ylabel("Počet vymeškaných hodín")
|
||||
by_grade = list([data[index][0][data[index][1] == i + 1] for i in range(5)])
|
||||
# data[index][0] - absences
|
||||
# data[index][1] - grades
|
||||
# data[index][0][specific grade] - absences for that specific grande
|
||||
# loop 1 through 5 plug in ^^
|
||||
axs[j, k].boxplot(by_grade, tick_labels=["1", "2", "3", "4", "5"])
|
||||
|
||||
axs[j, k].set_title(grade_names[index])
|
||||
|
||||
tau = round(taus[index], 2)
|
||||
p = round(ps[index], 4)
|
||||
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
|
||||
tau = taus[index]
|
||||
p = ps[index]
|
||||
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.4f}\np-val: {p:.4f}", ha="left", va="top",
|
||||
transform=axs[j, k].transAxes,
|
||||
fontweight="bold")
|
||||
|
||||
if index:
|
||||
by_grade = [data[index][0][data[index][1] == i + 1] for i in range(5)]
|
||||
means = list([a.mean() for a in filter(lambda b: len(b), by_grade)])
|
||||
for l in range(len(means)):
|
||||
mean = round(means[l], 2)
|
||||
axs[j, k].text(l + 1.02, mean + 5, f"{mean}")
|
||||
|
||||
fig.tight_layout()
|
||||
fig.show()
|
||||
if save != "":
|
||||
plt.savefig(save)
|
||||
else:
|
||||
plt.show()
|
||||
|
@ -7,8 +7,11 @@ parser = argparse.ArgumentParser(
|
||||
prog="distribution"
|
||||
)
|
||||
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Display graphs")
|
||||
parser.add_argument("-s", "--save", action="store_true", default=False, help="Save graphs")
|
||||
args = parser.parse_args()
|
||||
graph = args.graph
|
||||
save = args.save
|
||||
graph_index = 1
|
||||
|
||||
dataset = np.load("clean.npy")
|
||||
print(f"dataset shape: {dataset.shape}; analyzing distribution\n")
|
||||
@ -19,6 +22,10 @@ def percent(fraction: float) -> str:
|
||||
|
||||
|
||||
def plot_pie(data, labels, title, explode=None):
|
||||
global graph_index
|
||||
if not graph:
|
||||
return
|
||||
|
||||
i = 0
|
||||
while i < len(data):
|
||||
if data[i] == 0:
|
||||
@ -32,10 +39,18 @@ def plot_pie(data, labels, title, explode=None):
|
||||
plt.title(title)
|
||||
|
||||
plt.tight_layout()
|
||||
if save:
|
||||
plt.savefig(f"results/Figure_{graph_index}.png")
|
||||
graph_index += 1
|
||||
else:
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_hist(data, title, xlabel, ylabel):
|
||||
global graph_index
|
||||
if not graph:
|
||||
return
|
||||
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.hist(data, 25, edgecolor="black")
|
||||
plt.title(title)
|
||||
@ -43,6 +58,10 @@ def plot_hist(data, title, xlabel, ylabel):
|
||||
plt.ylabel(ylabel)
|
||||
|
||||
plt.tight_layout()
|
||||
if save:
|
||||
plt.savefig(f"results/Figure_{graph_index}.png")
|
||||
graph_index += 1
|
||||
else:
|
||||
plt.show()
|
||||
|
||||
|
||||
@ -62,7 +81,6 @@ print(f"4st year: {percent(grade_dist[3])}")
|
||||
print(f"5st year: {percent(grade_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(
|
||||
grade_dist,
|
||||
["Prvý ročník", "Druhý ročník", "Tretí ročník", "Štvrtý ročník", "Piaty ročník"],
|
||||
@ -79,14 +97,12 @@ print(f"Female: {percent(sex_dist[0])}")
|
||||
print(f"Male: {percent(sex_dist[1])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(sex_dist, ["Ženy", "Muži"], "Distribúcia pohlavia")
|
||||
|
||||
print("--- GPA ---")
|
||||
print("n/a")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_hist(dataset[:, 2], "Distribúcia piemernu známok", "Piemerná známka", "Počet študentov/tiek")
|
||||
|
||||
math = dataset[:, 3]
|
||||
@ -105,7 +121,6 @@ print(f"4: {percent(math_dist[3])}")
|
||||
print(f"5: {percent(math_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(math_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z matematiky")
|
||||
|
||||
slovak = dataset[:, 4]
|
||||
@ -124,7 +139,6 @@ print(f"4: {percent(slovak_dist[3])}")
|
||||
print(f"5: {percent(slovak_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(slovak_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok zo slovenčiny", (0, 0, 0, 0.25, 0.5))
|
||||
|
||||
english = dataset[:, 5]
|
||||
@ -143,7 +157,6 @@ print(f"4: {percent(english_dist[3])}")
|
||||
print(f"5: {percent(english_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(english_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z angličtiny")
|
||||
|
||||
ses = dataset[:, 6]
|
||||
@ -158,7 +171,6 @@ print(f"Middle: {percent(ses_dist[1])}")
|
||||
print(f"Upper: {percent(ses_dist[2])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(ses_dist, ["Nižšia trieda", "Stredná trieda", "Vyššia trieda"], "Distribúcia socio-ekonomických tried")
|
||||
|
||||
occupation = dataset[:, 7]
|
||||
@ -179,7 +191,6 @@ print(f"other : {percent(occupation_dist[4])}")
|
||||
print(f"none : {percent(occupation_dist[5])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(occupation_dist,
|
||||
["Práca 10 a viac hodín týždenne", "Práca menej ako 10 hodín týždenne", "Šport", "Hudba", "Niečo iné",
|
||||
"Žiadne"], "Distribúcia práce a aktivít")
|
||||
@ -200,7 +211,6 @@ print(f"dorms : {percent(living_dist[3])}")
|
||||
print(f"other : {percent(living_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(living_dist,
|
||||
["S rodinou", "S rodinným príslušníkom/ou", "Sám/a alebo so spolubývajúcim/ou", "Intrák", "Iné"],
|
||||
"Distribúcia životných situácií")
|
||||
@ -221,7 +231,6 @@ print(f"<= 1h : {percent(commute_dist[3])}")
|
||||
print(f"> 1h : {percent(commute_dist[4])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(commute_dist,
|
||||
["Intrák", "Menej ako 15 minút", "Menej ako 30 minút", "Menej ako hodinu", "Viac ako hodinu"],
|
||||
"Distribúcia dochádzania")
|
||||
@ -238,12 +247,10 @@ print(f"medium sleepers: {percent(sleep_dist[1])}")
|
||||
print(f"long sleepers : {percent(sleep_dist[2])}")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_pie(sleep_dist, ["6 hodín a menej", "7 až 8 hodín", "9 a viac hodín"], "Distribúcia spánku")
|
||||
|
||||
print("--- ABSENCE ---")
|
||||
print("n/a")
|
||||
print("")
|
||||
|
||||
if graph:
|
||||
plot_hist(dataset[:, 11], "Distribúcia absencií", "Počet neprítomných hodín", "Počet študentov/tiek")
|
||||
|
@ -25,16 +25,23 @@ nvidia-nvjitlink-cu12==12.4.127
|
||||
nvidia-nvtx-cu12==12.4.127
|
||||
packaging==24.2
|
||||
pandas==2.2.3
|
||||
pandas-flavor==0.6.0
|
||||
patsy==1.0.1
|
||||
pillow==11.0.0
|
||||
pyparsing==3.2.0
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2024.2
|
||||
scikit-learn==1.6.0
|
||||
scikit-posthocs==0.11.2
|
||||
scipy==1.14.1
|
||||
seaborn==0.13.2
|
||||
setuptools==75.6.0
|
||||
six==1.17.0
|
||||
statsmodels==0.14.4
|
||||
sympy==1.13.1
|
||||
tabulate==0.9.0
|
||||
threadpoolctl==3.5.0
|
||||
torch==2.5.1
|
||||
typing_extensions==4.12.2
|
||||
tzdata==2024.2
|
||||
xarray==2024.11.0
|
||||
|
@ -119,7 +119,7 @@ for epoch in range(epochs):
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
test_loss = loss.item() * X.size(0)
|
||||
test_loss += loss.item() * X.size(0)
|
||||
|
||||
test_loss /= len(test_dataset)
|
||||
test_losses.append(test_loss)
|
||||
|
Loading…
x
Reference in New Issue
Block a user