Compare commits

...

10 Commits

Author SHA1 Message Date
Daniel Svitan
2f3c547b55 🐛 Fixes test loss value 2025-01-06 20:12:40 +01:00
Daniel Svitan
f6eafc28ec 🔨 Changes absence grade plots to boxplots 2024-12-27 16:39:18 +01:00
Daniel Svitan
96a6599cf9 💄 Fixes minor mistakes 2024-12-27 16:13:25 +01:00
Daniel Svitan
6ddd476834 Changes posthoc to conover 2024-12-27 15:28:47 +01:00
Daniel Svitan
dc2e417969 💄 Adds colors to violins 2024-12-27 15:10:37 +01:00
Daniel Svitan
ab0d117c70 Updates gitignore 2024-12-27 13:05:42 +01:00
Daniel Svitan
f5fb3f647a 💄 Fixes mean and median on graph 2024-12-27 11:56:43 +01:00
Daniel Svitan
3ad7babcdc Adds printing group differences 2024-12-27 11:48:39 +01:00
Daniel Svitan
6831e847ff Adds automatic output saving 2024-12-23 18:08:18 +01:00
Daniel Svitan
29ab473c3c Automates analysis 2024-12-23 16:25:21 +01:00
8 changed files with 209 additions and 80 deletions

3
.gitignore vendored
View File

@ -6,6 +6,7 @@ venv/
__pycache__/
results/
paper/
*.zip
*.csv
@ -13,6 +14,8 @@ results/
*.jasp
*.pth
*.png
*.drawio
*.tar.gz
*.zip

2
Makefile Normal file
View File

@ -0,0 +1,2 @@
make analyze:
./analyze.sh

View File

@ -1,8 +1,11 @@
from typing import List
import itertools
import argparse
import numpy as np
import pandas as pd
import scipy.stats as stats
import scikit_posthocs as sp
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
@ -12,34 +15,84 @@ args = parser.parse_args()
graph = args.graph
save = args.save
colors = ["lightblue", "lightgreen", "lightcoral"]
edge_colors = ["blue", "green", "red"]
# source: mostly ChatGPT (ain't no way i'm writing this shit myself)
def analyze(name: str, data: List[np.ndarray]):
#print(f"Checking if normally distributed for {name}")
#for i in range(len(data)):
# _, normal_p = stats.shapiro(data[i])
# if normal_p > 0.05:
# print(f"\tGroup {i}: normally distributed")
# else:
# print(f"\tGroup {i}: NOT normally distributed")
filtered_data = []
group_names = []
all_values = []
for index, item in enumerate(data):
if len(item) > 5:
filtered_data.append(item)
numeric_data = [x for x in item if isinstance(x, (int, float))]
if len(numeric_data) > 5:
filtered_data.append(numeric_data)
group_names.append(chr(65 + index))
all_values.extend(numeric_data)
else:
print(f"Data group at index {index} removed due to insufficient size ({len(item)})")
print(f"Data group at index {index} removed due to insufficient size ({len(numeric_data)})")
if len(filtered_data) < 2:
print(f"Insufficient number of groups for Kruskal-Wallis test in {name}")
return None, None
# Kruskal-Wallis Test
F, p = stats.kruskal(*filtered_data)
print(f"F-stats for {name}: {F}")
print(f"p-value for {name}: {p}")
print(f"\nF-stats for {name}: {F:.8f}")
print(f"p-value for {name}: {p:.8f}")
if round(p, 4) > 0.05:
if p > 0.05:
print("statistically insignificant\n")
return F, p
print("statistically significant")
tukey_results = stats.tukey_hsd(*filtered_data)
print(tukey_results)
# Post-Hoc Dunn Test (Bonferroni-adjusted p-values)
all_ranks = stats.rankdata(all_values) # Rank all values together
group_ranks = [all_ranks[start:start + len(group)] for start, group in
zip(np.cumsum([0] + [len(g) for g in filtered_data[:-1]]), filtered_data)]
posthoc_results = sp.posthoc_conover(filtered_data, p_adjust='bonferroni')
results = []
total_sample_size = len(all_values)
for group1, group2 in itertools.combinations(group_names, 2):
idx1 = group_names.index(group1)
idx2 = group_names.index(group2)
mean_rank_1 = np.mean(group_ranks[idx1])
mean_rank_2 = np.mean(group_ranks[idx2])
rank_diff = mean_rank_1 - mean_rank_2
n1 = len(filtered_data[idx1])
n2 = len(filtered_data[idx2])
# Effect size (Rank-Biserial Correlation)
z_stat = rank_diff / np.sqrt((n1 + n2) * (n1 * n2) / total_sample_size)
effect_size = z_stat / np.sqrt(total_sample_size)
# Mean difference
mean_diff = np.mean(filtered_data[idx1]) - np.mean(filtered_data[idx2])
# Median difference
median_diff = np.median(filtered_data[idx1]) - np.median(filtered_data[idx2])
# Post-Hoc Dunn p-value
p_value = posthoc_results.loc[idx1 + 1, idx2 + 1]
results.append({
"Skupina 1": group1,
"Skupina 2": group2,
"Veľkosť účinku": f"{effect_size:.4f}",
"Rozdiel priemerov": f"{mean_diff:.4f}",
"Rozdiel mediánov": f"{median_diff:.4f}",
"Post-Hoc p-hodnota": f"{p_value:.4f}"
})
results_df = pd.DataFrame(results, dtype="object")
print("\nSummary Table of Effect Size, Mean, and Median Differences:")
print(results_df.to_markdown(index=False, tablefmt="github", disable_numparse=True))
print("")
return F, p
@ -60,25 +113,52 @@ def plot_violin(data, labels, Fs, ps, title):
index = j * 2 + k
step = 1 if index > 0 else 0.5
axs[j, k].violinplot(data[index], showmedians=True)
parts = axs[j, k].violinplot(data[index], showmedians=True, showmeans=True)
axs[j, k].set_title(grade_names[index])
axs[j, k].set_xlabel(title, fontweight="bold")
axs[j, k].set_ylabel(grade_name_labels[index], fontweight="bold")
# q1-q3 lines
for ind, vec in enumerate(data[index]):
quartile1, median, quartile3 = np.percentile(vec, [25, 50, 75])
if quartile1 == quartile3:
if quartile1 >= 0.1:
quartile1 -= 0.1
if quartile3 <= max(vec) - 0.1:
quartile3 += 0.1
axs[j, k].vlines(ind + 1, quartile1, quartile3, color="gray", linewidths=3)
axs[j, k].set_xticks(np.arange(1, len(labels) + 1), labels=labels)
axs[j, k].set_yticks(np.arange(1, 5.01, step))
F = round(Fs[index], 2)
p = round(ps[index], 4)
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
parts["cmeans"].set_color("red")
parts["cmedians"].set_color("green")
for i, part in enumerate(parts["bodies"]):
part.set_facecolor(colors[i % len(colors)])
part.set_edgecolor(edge_colors[i % len(edge_colors)])
F = Fs[index]
p = ps[index]
axs[j, k].text(0.01, 0.99, f"F-stat: {F:.4f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold")
axs[j, k].text(0.99, 0.99,
f"Na ľavo - priemer (červená)\nNa pravo - medián (zelená)\nSivá - medzi kvartilom 1 a 3",
ha="right",
va="top",
transform=axs[j, k].transAxes)
medians = list([np.median(a) for a in data[index]])
for l in range(len(medians)):
median = round(medians[l], 2)
axs[j, k].text(l + 1.05, median + 0.05, f"{median}")
means = list([a.mean() for a in data[index]])
for l in range(len(data[index])):
median = medians[l]
mean = means[l]
# left - mean, right - median
axs[j, k].text(l + 1.13, median - 0.05, f"{median:.2f}", color="green")
axs[j, k].text(l + 0.90 - len(labels) * 0.065, mean - 0.05, f"{mean:.2f}", color="red")
fig.tight_layout()
fig.show()
if save != "":
plt.savefig(save)
else:

19
analyze.sh Executable file
View File

@ -0,0 +1,19 @@
#!/usr/bin/bash
find results ! -name 'train.txt' -type f -exec rm -f {} +
./venv/bin/python3 distribution.py --graph --save | tee results/distribution.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_sex.py --graph --save "results/Figure_13.png" | tee results/sex.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_ses.py --graph --save "results/Figure_14.png" | tee results/ses.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_occupation.py --graph --save "results/Figure_15.png" | tee results/occupation.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_living.py --graph --save "results/Figure_16.png" | tee results/living.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_commute.py --graph --save "results/Figure_17.png" | tee results/commute.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_sleep.py --graph --save "results/Figure_18.png" | tee results/sleep.txt
echo -e "\n\n\n\n"
./venv/bin/python3 analyze_absence.py --graph --save "results/Figure_19.png" | tee results/absence.txt

View File

@ -6,8 +6,13 @@ import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Plot graph")
parser.add_argument("-s", "--save", default="", help="Graph save location")
args = parser.parse_args()
graph = args.graph
save = args.save
colors = ["lightblue", "lightgreen", "lightcoral"]
edge_colors = ["blue", "green", "red"]
dataset = np.load("clean.npy")
print(f"dataset shape: {dataset.shape}; analyzing column 11 (absence)")
@ -52,31 +57,37 @@ for j in range(2):
index = j * 2 + k
step = 1 if index > 0 else 0.5
if index == 0:
axs[j, k].scatter(dataset[:, 11], dataset[:, 2])
if not index:
x = data[index][0] # absence
y = data[index][1] # grade
axs[j, k].scatter(x, y)
axs[j, k].set_xlabel("Počet vymeškaných hodín")
axs[j, k].set_ylabel(grade_name_labels[index])
axs[j, k].set_yticks(np.arange(1, 6))
# trendline
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
axs[j, k].plot(x, p(x), color="gray")
else:
current = list([data[index][0][data[index][1] == i + 1] for i in range(5)]) # i wanna kms
axs[j, k].violinplot(list(filter(lambda x: len(x), current)), showmeans=True)
axs[j, k].set_xticks(np.arange(1, 6, 1), labels=["1", "2", "3", "4", "5"])
axs[j, k].set_xlabel(grade_name_labels[index])
axs[j, k].set_ylabel("Počet vymeškaných hodín")
by_grade = list([data[index][0][data[index][1] == i + 1] for i in range(5)])
# data[index][0] - absences
# data[index][1] - grades
# data[index][0][specific grade] - absences for that specific grande
# loop 1 through 5 plug in ^^
axs[j, k].boxplot(by_grade, tick_labels=["1", "2", "3", "4", "5"])
axs[j, k].set_title(grade_names[index])
tau = round(taus[index], 2)
p = round(ps[index], 4)
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.2f}\np-val: {p:.4f}", ha="left", va="top", transform=axs[j, k].transAxes,
tau = taus[index]
p = ps[index]
axs[j, k].text(0.01, 0.99, f"Tau τ: {tau:.4f}\np-val: {p:.4f}", ha="left", va="top",
transform=axs[j, k].transAxes,
fontweight="bold")
if index:
by_grade = [data[index][0][data[index][1] == i + 1] for i in range(5)]
means = list([a.mean() for a in filter(lambda b: len(b), by_grade)])
for l in range(len(means)):
mean = round(means[l], 2)
axs[j, k].text(l + 1.02, mean + 5, f"{mean}")
fig.tight_layout()
fig.show()
plt.show()
if save != "":
plt.savefig(save)
else:
plt.show()

View File

@ -7,8 +7,11 @@ parser = argparse.ArgumentParser(
prog="distribution"
)
parser.add_argument("-g", "--graph", action="store_true", default=False, help="Display graphs")
parser.add_argument("-s", "--save", action="store_true", default=False, help="Save graphs")
args = parser.parse_args()
graph = args.graph
save = args.save
graph_index = 1
dataset = np.load("clean.npy")
print(f"dataset shape: {dataset.shape}; analyzing distribution\n")
@ -19,6 +22,10 @@ def percent(fraction: float) -> str:
def plot_pie(data, labels, title, explode=None):
global graph_index
if not graph:
return
i = 0
while i < len(data):
if data[i] == 0:
@ -32,10 +39,18 @@ def plot_pie(data, labels, title, explode=None):
plt.title(title)
plt.tight_layout()
plt.show()
if save:
plt.savefig(f"results/Figure_{graph_index}.png")
graph_index += 1
else:
plt.show()
def plot_hist(data, title, xlabel, ylabel):
global graph_index
if not graph:
return
plt.figure(figsize=(8, 6))
plt.hist(data, 25, edgecolor="black")
plt.title(title)
@ -43,7 +58,11 @@ def plot_hist(data, title, xlabel, ylabel):
plt.ylabel(ylabel)
plt.tight_layout()
plt.show()
if save:
plt.savefig(f"results/Figure_{graph_index}.png")
graph_index += 1
else:
plt.show()
grade = dataset[:, 0]
@ -62,12 +81,11 @@ print(f"4st year: {percent(grade_dist[3])}")
print(f"5st year: {percent(grade_dist[4])}")
print("")
if graph:
plot_pie(
grade_dist,
["Prvý ročník", "Druhý ročník", "Tretí ročník", "Štvrtý ročník", "Piaty ročník"],
"Distribúcia ročníkov",
)
plot_pie(
grade_dist,
["Prvý ročník", "Druhý ročník", "Tretí ročník", "Štvrtý ročník", "Piaty ročník"],
"Distribúcia ročníkov",
)
sex = dataset[:, 1]
sex_dist = [
@ -79,15 +97,13 @@ print(f"Female: {percent(sex_dist[0])}")
print(f"Male: {percent(sex_dist[1])}")
print("")
if graph:
plot_pie(sex_dist, ["Ženy", "Muži"], "Distribúcia pohlavia")
plot_pie(sex_dist, ["Ženy", "Muži"], "Distribúcia pohlavia")
print("--- GPA ---")
print("n/a")
print("")
if graph:
plot_hist(dataset[:, 2], "Distribúcia piemernu známok", "Piemerná známka", "Počet študentov/tiek")
plot_hist(dataset[:, 2], "Distribúcia piemernu známok", "Piemerná známka", "Počet študentov/tiek")
math = dataset[:, 3]
math_dist = [
@ -105,8 +121,7 @@ print(f"4: {percent(math_dist[3])}")
print(f"5: {percent(math_dist[4])}")
print("")
if graph:
plot_pie(math_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z matematiky")
plot_pie(math_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z matematiky")
slovak = dataset[:, 4]
slovak_dist = [
@ -124,8 +139,7 @@ print(f"4: {percent(slovak_dist[3])}")
print(f"5: {percent(slovak_dist[4])}")
print("")
if graph:
plot_pie(slovak_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok zo slovenčiny", (0, 0, 0, 0.25, 0.5))
plot_pie(slovak_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok zo slovenčiny", (0, 0, 0, 0.25, 0.5))
english = dataset[:, 5]
english_dist = [
@ -143,8 +157,7 @@ print(f"4: {percent(english_dist[3])}")
print(f"5: {percent(english_dist[4])}")
print("")
if graph:
plot_pie(english_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z angličtiny")
plot_pie(english_dist, ["1", "2", "3", "4", "5"], "Distribúcia známok z angličtiny")
ses = dataset[:, 6]
ses_dist = [
@ -158,8 +171,7 @@ print(f"Middle: {percent(ses_dist[1])}")
print(f"Upper: {percent(ses_dist[2])}")
print("")
if graph:
plot_pie(ses_dist, ["Nižšia trieda", "Stredná trieda", "Vyššia trieda"], "Distribúcia socio-ekonomických tried")
plot_pie(ses_dist, ["Nižšia trieda", "Stredná trieda", "Vyššia trieda"], "Distribúcia socio-ekonomických tried")
occupation = dataset[:, 7]
occupation_dist = [
@ -179,10 +191,9 @@ print(f"other : {percent(occupation_dist[4])}")
print(f"none : {percent(occupation_dist[5])}")
print("")
if graph:
plot_pie(occupation_dist,
["Práca 10 a viac hodín týždenne", "Práca menej ako 10 hodín týždenne", "Šport", "Hudba", "Niečo iné",
"Žiadne"], "Distribúcia práce a aktivít")
plot_pie(occupation_dist,
["Práca 10 a viac hodín týždenne", "Práca menej ako 10 hodín týždenne", "Šport", "Hudba", "Niečo iné",
"Žiadne"], "Distribúcia práce a aktivít")
living = dataset[:, 8]
living_dist = [
@ -200,10 +211,9 @@ print(f"dorms : {percent(living_dist[3])}")
print(f"other : {percent(living_dist[4])}")
print("")
if graph:
plot_pie(living_dist,
["S rodinou", "S rodinným príslušníkom/ou", "Sám/a alebo so spolubývajúcim/ou", "Intrák", "Iné"],
"Distribúcia životných situácií")
plot_pie(living_dist,
["S rodinou", "S rodinným príslušníkom/ou", "Sám/a alebo so spolubývajúcim/ou", "Intrák", "Iné"],
"Distribúcia životných situácií")
commute = dataset[:, 9]
commute_dist = [
@ -221,10 +231,9 @@ print(f"<= 1h : {percent(commute_dist[3])}")
print(f"> 1h : {percent(commute_dist[4])}")
print("")
if graph:
plot_pie(commute_dist,
["Intrák", "Menej ako 15 minút", "Menej ako 30 minút", "Menej ako hodinu", "Viac ako hodinu"],
"Distribúcia dochádzania")
plot_pie(commute_dist,
["Intrák", "Menej ako 15 minút", "Menej ako 30 minút", "Menej ako hodinu", "Viac ako hodinu"],
"Distribúcia dochádzania")
sleep = dataset[:, 10]
sleep_dist = [
@ -238,12 +247,10 @@ print(f"medium sleepers: {percent(sleep_dist[1])}")
print(f"long sleepers : {percent(sleep_dist[2])}")
print("")
if graph:
plot_pie(sleep_dist, ["6 hodín a menej", "7 až 8 hodín", "9 a viac hodín"], "Distribúcia spánku")
plot_pie(sleep_dist, ["6 hodín a menej", "7 až 8 hodín", "9 a viac hodín"], "Distribúcia spánku")
print("--- ABSENCE ---")
print("n/a")
print("")
if graph:
plot_hist(dataset[:, 11], "Distribúcia absencií", "Počet neprítomných hodín", "Počet študentov/tiek")
plot_hist(dataset[:, 11], "Distribúcia absencií", "Počet neprítomných hodín", "Počet študentov/tiek")

View File

@ -25,16 +25,23 @@ nvidia-nvjitlink-cu12==12.4.127
nvidia-nvtx-cu12==12.4.127
packaging==24.2
pandas==2.2.3
pandas-flavor==0.6.0
patsy==1.0.1
pillow==11.0.0
pyparsing==3.2.0
python-dateutil==2.9.0.post0
pytz==2024.2
scikit-learn==1.6.0
scikit-posthocs==0.11.2
scipy==1.14.1
seaborn==0.13.2
setuptools==75.6.0
six==1.17.0
statsmodels==0.14.4
sympy==1.13.1
tabulate==0.9.0
threadpoolctl==3.5.0
torch==2.5.1
typing_extensions==4.12.2
tzdata==2024.2
xarray==2024.11.0

View File

@ -119,7 +119,7 @@ for epoch in range(epochs):
pred = model(X)
loss = loss_fn(pred, y)
test_loss = loss.item() * X.size(0)
test_loss += loss.item() * X.size(0)
test_loss /= len(test_dataset)
test_losses.append(test_loss)